The Humeral Head is Not a Sphere
More than 50 Years of Scientific Evidence

Introduction:

Historically, the glenohumeral joint has been described as spherical and this theory has been the basis for the design of Humeral Head (HH) prostheses. However, for more than 50 years, evidence has been growing to show that the humeral head is non-spherical (Figure 1) (1-17). Despite the fact that biomechanical principles call for a reconstruction of the native humeral geometry (2), spherical implants continue to dominate shoulder arthroplasty.

Historical Evidence:

With the introduction of modern shoulder arthroplasty by Neer in 1955, the author acknowledged that the superior edge of the humeral head was flattened (1). Over the course of more than five decades the shape of the humeral head was frequently described as non-spherical with a major axis going from superior/inferior (SI) and a minor axis anterior-posterior (AP). Several studies, using a variety of different methodologies are in agreement that the SI and AP mismatch is between 2 and 3mm (Table 1).

The fixed geometry of most prosthetic systems is limiting the surgeon’s ability to recreate the original anatomy of the humeral head (7) leading to significant biomechanical consequences such as the displacement of the center of rotation from its original position (mean: 14.6 mm) (10).

A recent report by Jun et al. (17) showed that a custom, non-spherical prosthetic head more accurately replicated the native humeral head shape, rotational range of motion, and gleno-humeral joint kinematics than a spherical head when compared with the native anatomy.

Table 1: Humeral Head Mismatch in mm: Superior/Inferior and Anterior/Posterior
Shoulder Inlay Arthroplasty:

Based on the historical evidence, the HemiCAP Shoulder Inlay Arthroplasty System (Arthrosurface, Franklin MA) was developed and introduced with FDA approval in 2003. Today, the system includes more than 40 different sizes and shapes to address the spherical and non-spherical aspects of the humeral head in partial inlay arthroplasty and includes non-spherical sizes for hemi- and total shoulder replacement (Figure 2).

The patient specific design concept was supported by Hammond et al. (18) who showed that the center of rotation was more closely restored with inlay arthroplasty than with stemmed hemiarthroplasty. This resulted in less eccentric loading and potentially better functioning for the patient as the biomechanics of the joint and the moment arms of the rotator cuff and deltoid more closely resemble the intact condition. Philips et al. presented their results from a biomechanical humeral head investigation comparing spherical and non-spherical shape models. The authors concluded that the ovoid shape best replicated the osteo and chondral surfaces of the humeral head (Figure 3) (19).

Figure 2: Shoulder Inlay Arthroplasty System: Size, Shape, and Curvature Matrix

Figure 3: Topology of the Humeral Head Articural Surface: Ovoid Shape Shows 3x Better Match than Spherical Geometry

References: